351 research outputs found

    RIP1-HAT1-SirT complex identification and targeting in treatment and prevention of cancer

    Get PDF
    Purpose: Alteration in cell death is a hallmark of cancer. A functional role regulating survival, apoptosis, and necroptosis has been attributed to RIP1/3 complexes.Experimental Design: We have investigated the role of RIP1 and the effects of MC2494 in cell death induction, using different methods as flow cytometry, transcriptome analysis, immunoprecipitation, enzymatic assays, transfections, mutagenesis, and in vivo studies with different mice models.Results: Here, we show that RIP1 is highly expressed in cancer, and we define a novel RIP1/3-SIRT1/2-HAT1/4 complex. Mass spectrometry identified five acetylations in the kinase and death domain of RIP1. The novel characterized pan-SIRT inhibitor, MC2494, increases RIP1 acetylation at two additional sites in the death domain. Mutagenesis of the acetylated lysine decreases RIP1-dependent cell death, suggesting a role for acetylation of the RIP1 complex in cell death modulation. Accordingly, MC2494 displays tumor-selective potential in vitro, in leukemic blasts ex vivo, and in vivo in both xenograft and allograft cancer models. Mechanistically, MC2494 induces bona fide tumor-restricted acetylated RIP1/caspase-8-mediated apoptosis. Excitingly, MC2494 displays tumor-preventive activity by blocking 7,12-dimethylbenz(α)anthracene-induced mammary gland hyperproliferation in vivoConclusions: These preventive features might prove useful in patients who may benefit from a recurrence-preventive approach with low toxicity during follow-up phases and in cases of established cancer predisposition. Thus, targeting the newly identified RIP1 complex may represent an attractive novel paradigm in cancer treatment and prevention

    Impaired Function is a Common Feature of Neuropathy‐Associated Glycyl‐t RNA Synthetase Mutations

    Get PDF
    C harcot– M arie– T ooth disease type 2 D ( CMT 2 D ) is an autosomal‐dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl‐t RNA synthetase ( GARS ) gene cause CMT 2 D . GARS is a member of the ubiquitously expressed aminoacyl‐ tRNA synthetase ( ARS ) family and is responsible for charging t RNA with glycine. To date, 13 GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss‐of‐function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT ‐associated GARS mutations in t RNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT ‐associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p. S er581 L eu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease‐causing mutation. Together, our data indicate that impaired function is a key component of GARS ‐mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109288/1/humu22681.pd

    A genome-wide assessment of conserved SNP alleles reveals a panel of regulatory SNPs relevant to the peripheral nerve

    Full text link
    Abstract Background Identifying functional non-coding variation is critical for defining the genetic contributions to human disease. While single-nucleotide polymorphisms (SNPs) within cis-acting transcriptional regulatory elements have been implicated in disease pathogenesis, not all cell types have been assessed and functional validations have been limited. In particular, the cells of the peripheral nervous system have been excluded from genome-wide efforts to link non-coding SNPs to altered gene function. Addressing this gap is essential for defining the genetic architecture of diseases that affect the peripheral nerve. We developed a computational pipeline to identify SNPs that affect regulatory function (rSNPs) and evaluated our predictions on a set of 144 regions in Schwann cells, motor neurons, and muscle cells. Results We identified 28 regions that display regulatory activity in at least one cell type and 13 SNPs that affect regulatory function. We then tailored our pipeline to one peripheral nerve cell type by incorporating SOX10 ChIP-Seq data; SOX10 is essential for Schwann cells. We prioritized 22 putative SOX10 response elements harboring a SNP and rapidly validated two rSNPs. We then selected one of these elements for further characterization to assess the biological relevance of our approach. Deletion of the element from the genome of cultured Schwann cells—followed by differential gene expression studies—revealed Tubb2b as a candidate target gene. Studying the enhancer in developing mouse embryos revealed activity in SOX10-positive cells including the dorsal root ganglia and melanoblasts. Conclusions Our efforts provide insight into the utility of employing strict conservation for rSNP discovery. This strategy, combined with functional analyses, can yield candidate target genes. In support of this, our efforts suggest that investigating the role of Tubb2b in SOX10-positive cells may reveal novel biology within these cell populations.https://deepblue.lib.umich.edu/bitstream/2027.42/143511/1/12864_2018_Article_4692.pd

    Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons

    Get PDF
    Charcot-Marie-Tooth disease type 2D (CMT2D) and distal spinal muscular atrophy type V (dSMA-V) are axonal neuropathies characterized by a phenotype that is more severe in the upper extremities. We previously implicated mutations in the gene encoding glycyl-tRNA synthetase (GARS) as the cause of CMT2D and dSMA-V. GARS is a member of the family of aminoacyl-tRNA synthetases responsible for charging tRNA with cognate amino acids; GARS ligates glycine to tRNAGly. Here, we present functional analyses of disease-associated GARS mutations and show that there are not any significant mutation-associated changes in GARS expression levels; that the majority of identified GARS mutations modeled in yeast severely impair viability; and that, in most cases, mutant GARS protein mislocalizes in neuronal cells. Indeed, four of the five mutations studied show loss-of-function features in at least one assay, suggesting that tRNA-charging deficits play a role in disease pathogenesis. Finally, we detected endogenous GARS-associated granules in the neurite projections of cultured neurons and in the peripheral nerve axons of normal human tissue. These data are particularly important in light of the recent identification of CMT-associated mutations in another tRNA synthetase gene [YARS(tyrosyl-tRNA synthetase gene)]. Together, these findings suggest that tRNA-charging enzymes play a key role in maintaining peripheral axons

    SAP Regulates TH2 Differentiation and PKC-θ-Mediated Activation of NF-κB1

    Get PDF
    AbstractXLP is caused by mutations affecting SAP, an adaptor that recruits Fyn to SLAM family receptors. SAP-deficient mice recapitulate features of XLP, including increased T cell activation and decreased humoral responses post-infection. SAP-deficient T cells also show increased TCR-induced IFN-γ and decreased TH2 cytokine production. We demonstrate that the defect in IL-4 secretion in SAP-deficient T cells is independent of increased IFN-γ production. SAP-deficient cells respond normally to polarizing cytokines, yet show impaired TCR-mediated induction of GATA-3 and IL-4. Examination of TCR signaling revealed normal Ca2+ mobilization and ERK activation in SAP-deficient cells, but decreased PKC-θ recruitment, Bcl-10 phosphorylation, IκB-α degradation, and nuclear NF-κB1/p50 levels. Similar defects were observed in Fyn-deficient cells. SLAM engagement amplified PKC-θ recruitment in wt but not SAP- or Fyn-deficient cells, arguing that a SAP/Fyn-mediated pathway enhances PKC-θ/NF-κB1 activation and suggesting a role for this pathway in TH2 regulation

    Differential expression analysis with global network adjustment

    Get PDF
    <p>Background: Large-scale chromosomal deletions or other non-specific perturbations of the transcriptome can alter the expression of hundreds or thousands of genes, and it is of biological interest to understand which genes are most profoundly affected. We present a method for predicting a gene’s expression as a function of other genes thereby accounting for the effect of transcriptional regulation that confounds the identification of genes differentially expressed relative to a regulatory network. The challenge in constructing such models is that the number of possible regulator transcripts within a global network is on the order of thousands, and the number of biological samples is typically on the order of 10. Nevertheless, there are large gene expression databases that can be used to construct networks that could be helpful in modeling transcriptional regulation in smaller experiments.</p> <p>Results: We demonstrate a type of penalized regression model that can be estimated from large gene expression databases, and then applied to smaller experiments. The ridge parameter is selected by minimizing the cross-validation error of the predictions in the independent out-sample. This tends to increase the model stability and leads to a much greater degree of parameter shrinkage, but the resulting biased estimation is mitigated by a second round of regression. Nevertheless, the proposed computationally efficient “over-shrinkage” method outperforms previously used LASSO-based techniques. In two independent datasets, we find that the median proportion of explained variability in expression is approximately 25%, and this results in a substantial increase in the signal-to-noise ratio allowing more powerful inferences on differential gene expression leading to biologically intuitive findings. We also show that a large proportion of gene dependencies are conditional on the biological state, which would be impossible with standard differential expression methods.</p> <p>Conclusions: By adjusting for the effects of the global network on individual genes, both the sensitivity and reliability of differential expression measures are greatly improved.</p&gt

    A CreER Mouse to Study Melanin Concentrating Hormone Signaling in the Developing Brain

    Get PDF
    The neuropeptide, melanin concentrating hormone (MCH), and its G protein‐coupled receptor, melanin concentrating hormone receptor 1 (Mchr1), are expressed centrally in adult rodents. MCH signaling has been implicated in diverse behaviors such as feeding, sleep, anxiety, as well as addiction and reward. While a model utilizing the Mchr1 promoter to drive constitutive expression of Cre recombinase (Mchr1‐Cre) exists, there is a need for an inducible Mchr1‐Cre to determine the roles for this signaling pathway in neural development and adult neuronal function. Here, we generated a BAC transgenic mouse where the Mchr1 promotor drives expression of tamoxifen inducible CreER recombinase. Many aspects of the Mchr1‐Cre expression pattern are recapitulated by the Mchr1‐CreER model, though there are also notable differences. Most strikingly, compared to the constitutive model, the new Mchr1‐CreER model shows strong expression in adult animals in hypothalamic brain regions involved in feeding behavior but diminished expression in regions involved in reward, such as the nucleus accumbens. The inducible Mchr1‐CreER allele will help reveal the potential for Mchr1 signaling to impact neural development and subsequent behavioral phenotypes, as well as contribute to the understanding of the MCH signaling pathway in terminally differentiated adult neurons and the diverse behaviors that it influences

    MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines

    Get PDF
    MicroRNA (miR)-199b-5p has been shown to regulate Hes-1, a downstream effector of the canonical Notch and noncanonical SHH pathways, whereby it impairs medulloblastoma (MB) cancer stem cells (CSCs) through a decrease in the CD133+/CD15+ cell population. Here, we have developed stable nucleic acid lipid particles (SNALPs) that encapsulate miR-199b-5p. The efficacy of the miR- 199b-5p delivery by these SNALPs is demonstrated by significant impairment of Hes-1 levels and CSC markers in a range of different tumorigenic cell lines: colon (HT- 29, CaCo-2, and SW480), breast (MDA-MB231T and MCF-7), prostate (PC-3), glioblastoma (U-87), and MB(Daoy, ONS-76, and UW-228). After treatment with SNALP miR-199b-5p, there is also impairment of cell pro- liferation and no signs of apoptosis, as measured by cas- pases 3/7 activity and annexin V fluorescence cell sorter analyses. These data strengthen the importance of such carriers for miRNA delivery, which show no cytotoxic effects and provide optimal uptake into cells. Thus, efficient target downregulation in different tumorigenic cell lines will be the basis for future preclinical studies
    corecore